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’ INTRODUCTION

Designing libraries with properties suitable for use in biologi-
cal screens and downstream discovery is a critical step in the
synthesis of any compound collection.1 It has been noted that
compounds resulting from diversity-oriented synthesis (DOS)
often violate Lipinski’s Rule of 52 with high molecular weight and
predicted low solubility.1,3 The outcome of any library synthesis,
however, is a product of the design. A primary goal of DOS is the
synthesis of skeletally diverse small molecules of increased
structural complexity (e.g., high sp3 content, multiple stereogenic
centers) that can be accessed in relatively few synthetic steps.4 If
effort is taken up front to control the physicochemical properties
of DOS library members, these structural features can be
achieved while still producing compounds with favorable phys-
icochemical properties.

When designing a small-molecule library for high-throughput
screening, chemists are faced with the challenge of selecting
which compounds to synthesize. There exists abundant literature
on various computational library design methods to choose an
optimal subset for synthesis (or screening) from large chemical
spaces.5 The two main approaches are reagent- and product-
based design.6,7 We have combined both of these design
strategies for the synthesis of DOS libraries, which we illustrate
here with an 8000-membered library of stereochemically diverse
medium-sized rings. The DOS scaffold that was selected as a
starting point for library design is shown in Figure 1, along with a
set of structurally related scaffolds.8 The latter will be used to

compare differences in design strategies as they influence the
physicochemical property profile of library members (vide infra).
The process employed for the selection of the scaffold itself
involved the use of various methods commonly employed for
assessing diversity (e.g., Principal Moments of Inertia, Multi-
fusion Similarity, Principal Component Analysis).9 The synthesis
of the SNAr-Pyr scaffold and its corresponding stereoisomers is
the subject of a separate communication.10

Three approaches have been utilized for the design of
compound libraries: (1) a full matrix design where every reagent
at R1 is combined with every reagent at R2 thus forming the
maximum number of products, (2) a sparse matrix design
strategy5b,11 where a subset of products are selected for synthesis
and not all reagent combinations are selected, and (3) a cherry
pick strategy5c where a subset of products (diverse or similar) is
selected for synthesis. Although we have utilized a full matrix
approach for previous DOS efforts8 a sparse matrix design
strategy appealed to us for the purpose of controlling the
physicochemical properties of the library members as well as
maximizing coverage of chemical space. While diverse chemical
space with suitable physicochemical properties can be achieved
through a cherry pick approach (using a combination of prop-
erty-based filtering and diversity-ranking) we generally reserve
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this method for small compound libraries (<100 compounds).
We envisioned that a sparse matrix approach would allow for the
selection of “near neighbors” around each diverse molecule thus
facilitating access to built-in structural analogs in contrast to a
diversity-ranking approach. In this regard a sparse matrix design
achieves a balance between a full matrix design and cherry picking.

The design process we have implemented involves the follow-
ing: (1) creation of master lists for the various reagent classes, (2)
library enumeration based on defined production pathways, and
(3) compound selection using the sparse matrix approach. The
design is carried out on a single stereoisomer and applied to all
the other stereoisomers12 thereby maintaining the ability to
generate stereo/structure�activity relationships upon biological
testing.8 Details of the design workflow are outlined below.13

’RESULTS AND DISCUSSION

Master Reagent Lists.Before a virtual library could be created
for product-based selection, a list of suitable building blocks for
each reagent class was required. As selecting reagents intuitively
from large databases is an arduous task, several software tools and
systems have been developed to aid in the filtering process.11,14

At our end we have implemented a reagent selection process that
takes into consideration diversity (with respect to structure and
properties), synthetic feasibility, availability, and price. As shown
in Figure 2 reagents for various reagent classes were retrieved
from Available Chemicals Directory (ACD) by using functional
group queries. Reagent classes included in our search were
sulfonyl chlorides, isocyanates, aldehydes, acids, acid chlorides,
alkynes, boronic acids, and amines. The resulting reagents were
filtered by molecular weight (e200) and number of rotatable
bonds (e5) and then exported as structure definition files
(sd files). The first step of the filtering process involved the
stripping of salts and removal of duplicate molecules. General
exclusion filters that were applicable to all reagent classes were
created in the form of Daylight SMARTS queries. These filters
include isotopes, inorganic elements, excessive number of halo-
gens, charged species, peroxides, thiols, Michael acceptors, etc.15

Reagent class specific filters were then applied to the reagent
lists. For example, carboxylic acid specific exclusion filters

included primary or secondary amines, formyl, nitro, nitroso,
carboxyl count > 2, isocyanate, imino, allene, epoxide, anhydride,
etc. The successive filtering/eliminations resulted in a manage-
able and significantly reduced list for each reagent classes of
interest. Various structural and physicochemical properties such
as molecular weight, ALogP, topological polar surface area
(TPSA), number of acceptors, number of donors, number of
rotatable bonds, number of rings, number of ring assemblies and
ring size were calculated. Principal component analysis (PCA)
was performed on the properties,16,17 followed by clustering
on principal components using the maximum dissimilarity
method18 for selecting cluster centers. The number of clusters
is predefined (Table 1) depending on the reagent class size.
Each reagent class was created as a project in Instant JChem

(ChemAxon) and cluster centers were automatically marked to
facilitate reagent selection. Chemists visually inspected the clusters
and selected reagents manually (not always the cluster center)
mindful of reactivity, synthetic feasibility, price, and availability.19,20

Many clusters resulted in no selections due to lack of availability
or medicinal chemistry considerations. When a particular struc-
ture was selected from a given cluster a small number of closely
related analogs were also chosen from the same cluster to ensure
SAR. Final selections consisted of 20�50 reagents per class.
We periodically update the master reagent lists based on the

Figure 1. SNAr-based DOS library scaffolds (R1 = diversity site 1,
R2 = diversity site 2).

Figure 2. Workflow for the creation of master lists for various reagent
classes.

Table 1. Reagent List Generation

reagent class total filtered

no.

clusters

no.

selected

no.

SNAr-Pyr
a

sulfonyl chlorides 171 153 30 23 11

isocyanates 517 438 80 20 15

aldehydes 5953 4307 120 46 22

acids 17 935 8551 200 26 24

acid chlorides 1008 780 60 30 N/A

alkynes 1752 1270 120 23 23

boronic acids 1539 846 60 23 20

amines 39 453 21 504 200 60 N/A
aNot all reagents on the master list were used for library enumeration.
(See Supporting Information).
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synthetic outcomes or commercial availability. Our most current
master reagent lists are provided in the Supporting Information.
The fragment property space for the master list of selected

reagents can be visualized using a PCA plot (Figure 3A).

Reagents that are close to each other on the plot are similar.
The loadings plot (Figure 3B) shows the relationship between
properties, which dictate the location of the fragment on the PCA
plot. For example, properties that are negatively correlated such

Figure 3. (a) Principal component analysis (PCA) for reagent master lists based on fragments properties. (b) Loading plot displaying properties used in
the analysis. Representative reagents are provided (A-E) to illustrate which properties influence their location on the PCA plot. (TPSA = topological
polar surface area, HBD = number of hydrogen bond donors, HBA = number of hydrogen bond acceptors, Aromatic rings = number of aromatic rings,
Rings = number of rings, Ring assembly = connectivity of rings).

Scheme 1. Solid-Phase Synthesis Plan for SNAr-Pyr Library
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as TPSA and ALogP (which influence polarity and hydrophobi-
city respectively) appear on opposite sides of the plot. When in
need of back-up reagents (because of synthetic feasibility or
unavailability), the selection of close analogs is facilitated by
revisiting the clustered reagent lists and PCA plot. We anticipate
these larger yet selected spaces to be useful upon screening when
hits are identified and additional SAR expansion is required.
Library Enumeration and Product Filtering. With the

master lists of reagents in hand, a virtual library was constructed
for the SNAr-Pyr scaffold where every reagent at R1 was used in
all combinations with reagents at R2 thereby resulting in a full
combinatorial matrix. All synthetically accessible production
pathways were enumerated (including “skips” at R1 or R2).

The synthetic sequence for the SNAr-Pyr library is shown in
Scheme 1. The reagent classes used at R1 included sulfonyl
chlorides, isocyanates, acids and aldehydes while reagents used at
R2 included boronic acids and alkynes for Suzuki and Sonoga-
shira reactions respectively. Enumeration was reaction based; a
full list of SMIRKS used for enumerating the SNAr-Pyr library are
provided as Supporting Information. The total number of
enumerated products for the SNAr-Pyr library is 3212 com-
pounds (72 reagents (þ 1 skip) at R1� 43 (þ 1 skip) reagents at
R2). (Reagents at R

1 containing aryl chlorides were removed
because of incompatibility with the cross coupling step.) The in
silico library enumeration and product filtering process is de-
picted in Figure 4.

Figure 4. Workflow for in silico library enumeration and product filtering process.

Figure 5. Workflow for in silico compound selection.
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Next, molecular properties that affect solubility, permeability,
and bioavailability were calculated for each product.1,21 The
properties and the threshold limits applied on the products are
molecular weight (e625), AlogP (�1 to 5), number of H-bond
acceptors plus donors (e10), number of rotatable bonds (e10),
and topological polar surface area (e140). Structures that
violated any single property were eliminated. We implemented
a “75/25” rule where the data set was partitioned into two data
streams based on molecular weight: less than 500 and greater
than 500. This rule was applied to favor products with molecular
weight less than 500, while still allowing for a small percentage of
“Lipinski violators” to be formed. The 75/25 rule is applied after
reviewing the enumerated chemical space. If the enumerated
chemical space largely occupies molecular weight <500 then the
75/25 rule is not applied. In the case of the SNAr-Pyr library the
space is roughly equally distributed with respect to molecular
weight partitioning.
Sparse Matrix Design. After filtering based on properties, a

subset of products is chosen from the virtual library based on
chemical similarity principles.22 The chemical similarity principle
assumes that structurally similar compounds should have similar
biological activity.23 As shown in Figure 5, diverse molecules
were selected from each partitioned data set based on the maxi-
mum dissimilarity method.14 The number of diverse molecules is

user defined and is dependent on the library size. In this instance
a 1000-membered library was desired. For every diversemolecule
at most four near neighbors were selected algorithmically based on
pairwise fingerprint similarity of the structures with a similarity

Figure 6. Representative diverse seed for SNAr Pyr library and selected four near neighbors (Tc = Tanimoto coefficient).

Figure 7. Scatter plot of molecular weight vs ALogP for the SNAr-Pyr
library, selected (1000), not selected (2040) and failed (172).
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threshold (Tanimoto coefficient, Tc) of 0.8 (Figure 6).24,25

A molecule already considered as a neighbor is dropped from
future selection. The number of reagents selected for the SNAr-
Pyr library production includes 24 acids, 22 aldehydes, 15
isocyanates, and 11 sulfonyl chlorides, 20 boronic acids and 23
alkynes.26 For this particular library, relatively few reagents were
dropped given the proportion of selected to enumerated space
(1:3). For smaller libraries (or those withmore than two diversity
sites) a larger number of reagents tend to be dropped.
To achieve synthetic efficiency during library production we

typically set a minimum threshold for the number of products
formed per reagent. This is done to prohibit the selection of
reagents that form only a small number of products. The
threshold is user defined and can vary by enumerated library
size. For the SNAr-Pyr library, a minimum count of 5 products
per reagent was applied. On review of the outcome of the design,
excessive use of any one reagent is curtailed by applying a limiting
filter and the design is repeated accordingly. If a problematic

reagent is identified during feasibility studies that reagent can be
dropped along with the associated products. In such situations
new products are selected from the remaining chemical space
that are dissimilar to already selected products.
Property Analysis. Following the implementation of the

sparse matrix design we analyzed the selected product space
with respect to molecular weight and ALogP. As shown in
Figure 7 compounds selected for synthesis are uniformly dis-
tributed across the virtual chemical space with a greater number
of compounds occupying the region MW <500. Also shown in
the plot are compounds that passed the property criteria but were
not selected and compounds that failed any single property filter
(MW, ALogP, TPSA, rotatable bonds, etc).
Lastly we compared the property distribution of compounds

resulting from a sparse vs full matrix design strategy in the context
of a set of structurally related DOS scaffolds (structures shown in
Figure 1). Similar to the SNAr-Pyr library a sparse matrix design
strategy was applied to the SNAr-SO2 scaffold. Meanwhile a full

Figure 8. Property distribution for SNAr-based DOS libraries: Full (blue) vs sparse (red) matrix design.
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matrix strategy was employed for the SNAr-8 and SNAr-9
scaffolds. (In the latter case, no property filters were applied.)
The combined property analysis is shown in Figure 8. A mere
visual inspection shows a clear shift in distribution in the desired
direction for all properties, especially molecular weight and polar
surface area. Mean values calculated for each of the descriptors at
the library level also reflect the same (see Table 2). Notably, for
this particular set of scaffolds the mean ALogP, HBD and HBA
values were deemed acceptable even without the sparse matrix
design.

’CONCLUSION

In summary, we have implemented a reagent- and product-
based sparse matrix design strategy that is both interactive and
practical, involving full participation of the chemists. The key
features of the compound selection are desirable physicochem-
ical properties, diversity and built-in structural analogs and
synthetic efficiency. We expect our design-synthesis-screening
cycle to inform future library design and suggest refinements to
our approach. As the product filters can be adjusted at the outset
of the design, the property profile of the library can be tailored to
meet the needs of the therapeutic area of interest (e.g., CNS,
antibacterial).27
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